Max – A Thought Experiment: Could AI Run the Economy Better Than Markets?

One of the fundamental critiques against twentieth century experiments in central economic planning, and the main reason for their failures, was the inability of human-directed planning systems to manage the data gathering, analysis, computation, and control necessary to direct the vast complexity of production, allocation, and exchange decisions that make up a modern economy. Rapid recent advances in AI, data, and related technological capabilities have re-opened that old question, and provoked vigorous speculation about the feasibility, benefits, and threats of an AI-directed economy. This paper presents a thought experiment about how this might work, based on assuming a powerful AI agent (whimsically named “Max”) with no binding computational or algorithmic limits on its (his) ability to do the task.

READ MORE

Artificial Intelligence’s Societal Impacts, Governance, and Ethics: Introduction to the 2019 Summer Institute on AI and Society and its rapid outputs

The works assembled here are the initial outputs of the First International Summer Institute on Artificial Intelligence and Society (SAIS). The Summer Institute was convened from July 21 to 24, 2019 at the Alberta Machine Intelligence Institute (Amii) in Edmonton, in conjunction with the 2019 Deep Learning/Reinforcement Learning Summer School.

READ MORE

Could AI drive transformative social progress? What would this require?

The potential societal impacts of artificial intelligence (AI) and related technologies are so vast, they are often likened to those of past transformative technological changes such as the industrial or agricultural revolutions. They are also deeply uncertain, presenting a wide range of possibilities for good or ill – as indeed the diverse technologies lumped under the term AI are themselves diffuse, labile, and uncertain.

READ MORE

Artificial Intelligence in Strategic Context: an Introduction

Artificial intelligence (AI), particularly various methods of machine learning (ML), has achieved landmark advances over the past few years in applications as diverse as playing complex games, language processing, speech recognition and synthesis, image identification, and facial recognition. These breakthroughs have brought a surge of popular, journalistic, and policy attention to the field, including both excitement about anticipated advances and the benefits they promise, and concern about societal impacts and risks – potentially arising through whatever combination of accident, malicious or reckless use, or just social and political disruption from the scale and rapidity of change.

READ MORE